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Abstract— We obtain the first deterministic extractors for
sources generated (or sampled) by small circuits of bounded depth.
Our main results are:

(1) We extract k(k/nd)O(1) bits with exponentially small error
from n-bit sources of min-entropy k that are generated by functions
f : {0, 1}` → {0, 1}n where each output bit depends on ≤ d input
bits. In particular, we extract from NC0 sources, corresponding to
d = O(1).

(2) We extract k(k/n1+γ)O(1) bits with super-polynomially
small error from n-bit sources of min-entropy k that are generated
by poly(n)-size AC0 circuits, for any γ > 0.

As our starting point, we revisit the connection by Trevisan and
Vadhan (FOCS 2000) between circuit lower bounds and extractors
for sources generated by circuits. We note that such extractors
(with very weak parameters) are equivalent to lower bounds for
generating distributions (FOCS 2010; with Lovett, CCC 2011).
Building on those bounds, we prove that the sources in (1) and (2)
are (close to) a convex combination of high-entropy “bit-block”
sources. Introduced here, such sources are a special case of affine
ones. As extractors for (1) and (2) one can use the extractor for
low-weight affine sources by Rao (CCC 2009).

Along the way, we exhibit an explicit boolean function b :
{0, 1}n → {0, 1} such that poly(n)-size AC0 circuits cannot
generate the distribution (Y, b(Y )), solving a problem about the
complexity of distributions.

Independently, De and Watson (RANDOM 2011) obtain a result
similar to (1) in the special case d = o(lgn).

Keywords-extractor; circuit source; the complexity of distri-
butions; small-depth circuit; local; sampling; weak randomness
source;

1. INTRODUCTION

Access to a sequence of uniform and independent bits (or
numbers) is crucial to efficient computation, but available
sources of randomness appear to exhibit biases and correla-
tions. So a significant amount of work is put into “purifying”
such sources, by applying a deterministic function, known
as extractor, that given as input a weak, n-bit source of
randomness outputs m bits that are close to uniform over
{0, 1}m (in statistical distance).

The theoretical investigation of this problem goes back
to von Neumann [42]. Since then, many researchers have
been analyzing increasingly complex sources, modeled as
probability distributions D with high min-entropy k (i.e.,
Pr[D = a] ≤ 2−k for every a), see e.g. [7], [9], [34].

In 2000, Trevisan and Vadhan [39] consider sources that
can be generated, or sampled, efficiently. That is, the n-bit
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source is the output of a small circuit C : {0, 1}` → {0, 1}n
on a uniform input. As they write, “one can argue that
samplable distributions are a reasonable model for distribu-
tions actually arising in nature.” They point out that even
extracting 1 bit from from such sources of min-entropy
k = n − 1 entails a circuit lower bound for related
circuits. On the other hand, assuming the existence of a
function computable in time 2O(n) that requires Σ5 circuits
of size 2Ω(n), Trevisan and Vadhan obtain extractors (for
min-entropy k = (1 − Ω(1))n). The gap between their
positive and negative result prevents one from obtaining
unconditional results even for “restricted” classes of circuits
for which we do have lower bounds, such as the class AC0

of unbounded fan-in circuits of constant depth.
The word “restricted” is in quotes because seemingly

crippled circuits such as AC0 or DNF turn out to have
surprising power when it comes to sampling as opposed
to computing [41]. In fact, until this work it was an open
problem to exhibit any explicit distribution on n bits with
min-entropy n − 1 that cannot be sampled in AC0! The
solution to this problem is obtained in this paper as a
corollary to our main results: extractors for sources sampled
by restricted classes of circuits, which we simply call circuit
sources.

A main difficulty in obtaining such extractors is that cir-
cuit sources are not easily broken up in independent blocks,
a property that is heavily exploited to obtain extractors for
various sources, including independent sources (see e.g. [26]
and the references therein), bit-fixing sources [10], [24],
[15], [31], and small-space sources [23]. One type of sources
that somewhat escaped this “independence trend,” and that is
especially important for this work, is the affine one over the
field with two elements, i.e., distributions that are uniform
over an affine sub-space of {0, 1}n of dimension k. Here
a line of works exploits the algebraic structure to obtain
extractors [3], [8], [31], [6], [44], [27], [35]. But again,
algebraic structure does not seem present in circuit sources,
at first sight.

1.1. Our results

We obtain the first extractors for sources generated by
various types of circuits, such as AC0. This is achieved by
exhibiting new reductions that show that those sources are
(close to) a convex combination of (a special case of) affine
sources. Depending on which affine extractor is used, one



extracts from circuit sources with various parameters. We
state next some extractors obtained using Rao’s extractor
for low-weight affine sources [31].

The following theorem extracts from local sources, i.e.,
n-bit sources that are the output distribution of a function
f : {0, 1}` → {0, 1}n where each bit fi depends on ≤ d
input bits. We extract m ≥ k(k/n)O(1) bits. The theorem
and the discussion below give a more refined bound on m.
The notation Ω̃ hides logarithmic factors; all logarithms are
in base 2.

Theorem 1.1 (Extractor for local sources). For some ρ > 0,
any d = d(n), k = k(n):

There is an explicit function EXT : {0, 1}n → {0, 1}m
that extracts m bits with error ε ≤ 2−m

Ω(1)
from any d-

local source with min-entropy k, provided 2dn/k < mρ,
for:
(1) m = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3) = Ω̃(k(k/n)2d3),
or (2) m = Ω(k(k/n)/d22d).

Note that Theorem 1.1.(1) extracts from some sublinear
entropy k = n1−Ω(1) and simultaneously polynomial lo-
cality d = nΩ(1). Also, from NC0 sources (d = O(1)) of
min-entropy k = Ω(n), Theorem 1.1 (either setting) extracts
Ω(n) bits with error 2−n

Ω(1)
. The error can be improved to

2−Ω(n) using Bourgain’s extractor [8] (cf. [44], [27]).

We also obtain extractors for AC0 sources, with output
length m ≥ k(k/n1+γ)O(1).

Theorem 1.2 (Extractor for AC0 sources). For some ρ > 0,
any γ > 0, d = O(1), k = k(n):

There is an explicit extractor EXT : {0, 1}n → {0, 1}m
with output length m = k(k/n1+γ) and error 1/nω(1)

for sources with min-entropy k that are generated by AC0

circuits C : {0, 1}nd → {0, 1}n of depth d and size nd,
provided n1+γ/k < mρ.

The unspecified constant ρ in the “provided” sentences in
the above theorems arises from a corresponding unspecified
constant in Rao’s work [31]. Later in §2.3 we sketch how
this constant can be made ρ = 1 − α for any constant
α > 0. This makes Theorem 1.2 apply provided just
k > n2/3+Ω(1), while if d = no(1) Theorem 1.1.(1) applies
provided k > n3/4+Ω(1), and if d = o(lg n) Theorem 1.1.(2)
applies provided k > n2/3+Ω(1).

Assuming a sufficiently good affine extractor, the “pro-
vided” sentences are dropped altogether. For example, in the
case d = O(1), Theorem 1.1.(2) always extracts Ω(k(k/n))
bits. This is interesting for k ≥ c

√
n, and we do not know

how to handle smaller values of k even for d = 2.

Rao’s extractor, and hence the extractor in Theorem 1.1
and 1.2, is a somewhat elaborate algorithm. It is natural to
try to obtain simpler extractors. For affine sources, this is
investigated in the recent works [6], [27]. For local sources,
in this paper we show that the majority function extracts one

bit, albeit with worse parameters than the previous theorems.
More bits can be obtained by truncating the hamming weight
of the source, resulting in a simple, symmetric extractor.

Theorem 1.3. There is a symmetric, explicit, deterministic
extractor EXT : {0, 1}n → {0, 1}m that extracts m =
Ω(lg lg n− lg d) bits with error ε = (d/ lg n)Ω(1) from any
n-bit source with shannon entropy k ≥ n − n0.49 whose
bits are each computable by a decision tree of depth d. To
extract m = 1 bit, one can take EXT := majority.

For example setting d =
√

lg n we extract Ω(lg lg n) bits
with error (1/ lg n)Ω(1).

While the parameters of Theorem 1.3 are much weaker
than those of the previous extractors, we remark that any
symmetric extractor for (d = ω(1))-local sources needs min-
entropy k ≥ n(1−O(lg d)/d) = n(1−o(1)), as can be seen
by breaking the source in chunks of d bits and generating
a balanced string in each. Also note that the extractor in
Theorem 1.3 extracts from shannon entropy, as opposed
to min-entropy. It can be shown that any extractor needs
shannon entropy k ≥ n(1− o(1)) to extract even 1 bit with
error o(1).

Extractors vs. the complexity of distributions: As our
starting point, we revisit the aforementioned connection
between extractors and circuit lower bounds by Trevisan and
Vadhan [39]: We observe that obtaining extractors (with very
weak parameters) for circuit sources is equivalent to proving
sampling lower bounds for the same circuits [41], [28]. For
example we record the following no-overhead incarnation
of this equivalence. Let EXT : {0, 1}n → {0, 1} be any
function, and assume for simplicity that EXT is balanced.
Then EXT is an extractor with error < 1/2 (a.k.a. disperser)
for sources of min-entropy k = n− 1 generated by circuits
of size s if and only if for every b ∈ {0, 1} circuits of size s
cannot generate the uniform distribution over EXT−1(b). For
general k and possibly unbalanced EXT, we have that EXT is
such an extractor if and only if for every b ∈ {0, 1} circuits
of size s cannot generate a distribution of min-entropy k
supported in EXT−1(b).

By the “if” direction, the sampling bounds in [41] yield
extractors with very weak parameters (d < lg n, k = n −
1,m = 1, ε < 1/2).

The “only if” direction is a slight variant of [39,
Prop. 3.2]. We use it next in combination with our extractors
to address the challenge of exhibiting a boolean function b
such that small AC0 circuits cannot sample (Y, b(Y )), raised
in [41] (cf. [28]). (Actually we use another slight variant of
[39, Prop. 3.2] which has some overhead but more easily
gives a polynomial-time samplable distribution.)

Theorem 1.4. There is an explicit map b : {0, 1}∗ → {0, 1}
such that for every d = O(1):

Let C : {0, 1}nd → {0, 1}n+1 be an AC0 circuit of
size nd and depth d. The distribution C(X) for uniform X



has statistical distance ≥ 1/2n
1−Ω(1)

from the distribution
(Y, b(Y )) for uniform Y ∈ {0, 1}n.

For b one can take the first bit of the extractor in Theorem
1.2 for k = n1−Ω(1).

This theorem is also interesting in light of the fact that
small AC0 circuits are able to generate the distribution
(x, EXT(x)) where EXT is some affine extractor for min-
entropy ≥ (1/2 + Ω(1))n. Specifically, for EXT one can
choose the inner product function, which has been shown
by several researchers to be an extractor, and whose corre-
sponding distribution (x, EXT(x)) can be sampled by small
AC0 circuits [21] (cf. [40]). Thus the above theorem is an
explanation for the fact that affine extractors for sub-linear
min-entropy are more complicated.

1.2. Techniques

A main technical contribution is to show that local sources
are (close to) a convex combination of a special case of
affine sources which we call “bit-block.” A bit-block source
is a source in which each output bit is either a constant or a
literal (i.e., Xi or 1−Xi), and the number of occurrences of
each literal is bounded by a parameter we call “block-size.”

Definition 1.5 (Bit-block source). A random variable Y over
{0, 1}n is a bit-block source with block-size w and entropy
k if there exist:

(1) a partition of [n] into k+ 1 sets B0, B1, . . . , Bk such
that |Bi| ≤ w for every i ≥ 1,

(2) a string b0 ∈ {0, 1}|B0|, and
(3) k non-constant functions fi : {0, 1} → {0, 1}|Bi| for

any i ≥ 1,
such that Y can be generated as follows: let (X1, . . . , Xk)

be uniform over {0, 1}k, set YB0 = b0, and for i ≥ 1 set
YBi = fi(Xi). (Where YS denotes the bits of Y indexed by
S.)

The next theorem shows that local sources Y are a convex
combination of bit-block sources, up to an error ε. That is,
there is an algorithm to sample Y that, except for an error
probability of ε, outputs a sample from a bit-block source.

Theorem 1.6 (Local is convex combo of bit-block). Let
f : {0, 1}` → {0, 1}n be a d-local function such that for
uniform X ∈ {0, 1}`, f(X) has min-entropy ≥ k.

Then, letting s := 10−5k(k/n)2 lg(d)/ lg(4n/k)d3 =
Ω̃(k3/n2d3), we have that f(X) is 2−s-close to a convex
combination of bit-block sources with entropy k′ = s and
block-size ≤ 2dn/k.

Bit-block sources with block-size w are a special case
of affine sources of weight w. The latter sources, de-
fined in [31], are generated as a0 +

∑k
i=1Xibi, where

a0, b1, . . . , bk ∈ {0, 1}n, (X1, . . . , Xk) is uniform in
{0, 1}k, and the bi are independent vectors of hamming
weight ≤ w. To write a bit-block source as in Definition 1.5

as a low-weight affine one, define each vector bi as 0 except
for bi|Bi := fi(1) − fi(0), and vector a0 as a0|B0 = b0,
a0|Bi = fi(0).

Rao [31] extracts m = k(1−o(1)) bits from affine sources
of weight w < kρ. So we obtain the extractor for local
sources in Theorem 1.1.(1) by combining Theorem 1.6 with
[31]. To obtain Theorem 1.1.(2) we prove a corresponding
variant of Theorem 1.6.

Intuition behind the proof of Theorem 1.6: We now
explain the ideas behind the proof of Theorem 1.6.(1). Let
f : {0, 1}nd → {0, 1}n be a d-local map, whose output
distribution Y = f(X) has min-entropy k. We describe
an algorithm to sample Y such that with high probability
the algorithm outputs a sample from a high-entropy bit-
block source. For the description it is useful to consider
the bipartite graph associated to f , where an output variable
yi is adjacent to the ≤ d input variables xj it depends on.

The algorithm.
Note there at most k/2 input variables xj with degree

≥ 2dn/k. Fix those uniformly at random, and consider the
random variable X where the other bits are chosen uniformly
at random. Note the output min-entropy is still ≥ k−k/2 =
Ω(k).

Now the idea is to iteratively select high-influence input
variables, and let their neighborhoods be a block in the
bit-block source. (Recall the influence of a variable x on
a function is the probability over the choice of the other
variables that the output still depends on x.)

Iterate while H∞(f(X)) ≥ Ω(k): Since H∞(f(X)) ≥
Ω(k), there is an output random variable Yi with shannon
entropy ≥ Ω(k/n). Otherwise, the overall shannon entropy
of the output is ≤ o(k/n)n = o(k), and shannon entropy is
larger than min-entropy.

Consequently, Yi has high variance: min{Pr[Yi =
0],Pr[Yi = 1]} ≥ Ω̃(k/n).

Now, Yi only depends on d input variables Xj . By the
edge isoperimetric inequality [17], [18], there is an input
variable Xj that has influence ≥ Ω̃(k/nd).

Set uniformly at random N(N(xj)) \ {xj}, where N(.)
denotes “neighborhood,” and put xj aside. (xj is candidate
to contributing to the entropy of the bit-block source.)

Go to the next iteration.

Set uniformly at random all unfixed input variables that
were not put aside.

Finally, set uniformly at random the variables that were
put aside, and output f(X).

We now analyze this algorithm. First note each iteration
fixes ≤ |N(N(xj))| ≤ 2d2n/k variables. Since we iterate
as long as H∞(f(X)) ≥ Ω(k), we do so t = Ω(k(k/nd2))
times.

Also, when we set N(N(xj)) \ {xj}, with probability at
least the influence ≥ Ω̃(k/nd) the value of xj influences



the output variables in N(xj). Those variables correspond
to a block, which note has size |N(xj)| ≤ 2dn/k.

Fixing N(N(xj))\{xj} ensures that future actions of the
algorithm will not alter the distribution of N(xj) over the
choice of xj .

Hence out of t iterations we expect tΩ(k/nd) blocks to be
non-constant, corresponding to the entropy of the bit-block
source. By a chernoff bound we indeed have tΩ(k/nd) such
blocks with high probability at the final step. This concludes
the overview of the proof of Theorem 1.6.(1).

The above argument can be implemented in various ways
depending what influence bound one uses. For example one
obtains Theorem 1.6.(2) using the simple bound that any
non-constant function on d bits has a variable with influence
≥ 1/2d.

Finally, we mention that a decomposition of local sources
into bit-block ones also appears in [41]. However that
decomposition is tailored for a different type of results,
and is incomparable with the present decomposition. In
particular, it is still an open problem if the negative results
in [41] about generating the uniform distribution over n-bit
strings with hamming weight αn can be improved to handle
d ≥ lg n or larger statistical distance.

Handling AC0 sources: To handle AC0 sources we
use the previous extractor for local sources in combination
with random restrictions [14], [1], [43], [19]. The switching
lemma [19] guarantees that after fixing all but a small
fraction q of the input bits to constant, the AC0 source
collapses to a source with small locality.

The problem we face is that the restriction may have
destroyed the min-entropy of the source. We show that, in
fact, with high probability a random restriction that leaves
free a q fraction of the input variables decreases the entropy
by a factor Ω(q) at most. This is the best possible up to
constant factors as can be seen by considering the identity
map.

Lemma 1.7 (Restrictions preserve min-entropy). Let f :
{0, 1}` → {0, 1}n be a function such that H∞(f(X)) = k.
Let ρ be a random restriction that independently sets vari-
ables to ?, 1, and 0 with probabilities q, (1 − q)/2, and
(1− q)/2. For every ε > 0:

Pr
ρ

[
H∞(fρ(X)) ≥ kq/4− lg(1/ε)/2

]
≥ 1− ε.

Note the only restriction this lemma puts on f is entropy.
The proof of this lemma builds on [28]. Specifically,

we use an isoperimetric inequality for noise, that was
highlighted in that work, to bound the collision probability
of the restriction of f . The lemma then follows from the
fact that the logarithm of the collision probability equals
min-entropy up to constant factors.

Putting everything together, we arrive at the following
result stating that any high-entropy AC0 map is close to
a convex combination of high-entropy bit-block sources.

Corollary 1.8 (AC0 is convex combo of bit-block). For
every d = O(1), γ > 0:

Any n-bit distribution generated by an AC0 circuit of
depth d and size nd is 1/nω(1)-close to a convex combination
of affine sources with entropy k(k/n1+γ). (In fact, bit-block
sources with block-size n1+γ/k.)

Intuition behind the proof of Theorem 1.3: We now
explain how we prove that the majority function extracts
one bit with error o(1) from sources with locality d = O(1)
and min-entropy k = n− o(

√
n).

First, we use an information-theoretic argument from [32],
[13], [36] to argue that for all but o(

√
n) bits in the output,

any w bits are close (error o(1)) to being uniform, for some
w = ω(1).

Then we use the following key idea: since the distribution
is local, if w bits are close to being uniform, then they
are exactly uniform. This is because the granularity of the
probability mass of those w bits is 2−wd, which we can set
to be larger than the error.

Hence, we have a distribution where all but o(
√
n) bits

are w-wise independent. We show how to extract from such
distributions using the bounded-independence central limit
theorem [12]. Indeed, this theorem guarantees that the sum
of the w-wise independent bits behaves like a binomial
distribution, up to some error. In particular, it has standard
deviation Ω(

√
n), and so the o(

√
n) “bad” bits over which

we do not have control are unlikely to be able to influence
the value of majority, which will be roughly unbiased.

Concurrent work: De and Watson [11] independently
obtain extractors for sources with locality d = o(lg n). Their
result is similar to our Theorem 1.1.(2). Their proof also uses
Rao’s extractor, but is otherwise different.

Organization: In §2 we prove Theorem 1.6 that local
sources are a convex combination of bit-block sources, and
then obtain extractors for local sources, proving Theorem
1.1. We also discuss various ways to optimize the parame-
ters. In §3 we prove our Lemma 1.7 bounding the entropy
loss when applying a restriction, and obtain our extractor for
AC0 sources, proving Theorem 1.2. We also prove Theorem
1.4, the negative result for generating (Y, b(Y )) in AC0. In
§4 we obtain the simpler extractor, proving Theorem 1.3.
Finally, in §5 we discuss open problems.

2. FROM LOCAL TO BIT-BLOCK

In this section we prove Theorem 1.6, restated next, that
local sources are a convex combination of bit-block sources.
We then use this to obtain extractors for local sources,
proving Theorem 1.1. We then discuss various ways to
improve the parameters.

Theorem 1.6 (Local is convex combo of bit-block). Let
f : {0, 1}` → {0, 1}n be a d-local function such that for
uniform X ∈ {0, 1}`, f(X) has min-entropy ≥ k.

Then, letting s := 10−5k(k/n)2 lg(d)/ lg(4n/k)d3 =



Ω̃(k3/n2d3), we have that f(X) is 2−s-close to a convex
combination of bit-block sources with entropy k′ = s and
block-size ≤ 2dn/k.

We start with some preliminaries for the proof. First we
need a few basic results regarding entropy, both the shannon
entropy H and the min-entropy H∞.

Claim 2.1. For any x, y ∈ (0, 1/2], if H(x) ≥ y then x ≥
0.06y/ lg(1/y).

Proof: Since y ≤ 1/2 we have y/ lg(1/y) ≤ 1/2.
Hence if x ≥ 0.03 then we are done. Otherwise, it can
be verified that 2 lg(1/x) ≤ 1/x2/3. It also holds for any
x ≤ 1/2 that H(x) ≤ 2x lg(1/x), and so our assumption
implies 2x lg(1/x) ≥ y. Combining these two facts we
get that x1/3 ≥ y, and so 2 lg(1/x) ≤ 6 lg(1/y). Using
again that x ≥ y/2 lg(1/x), we get x ≥ y/6 lg(1/y) ≥
0.06y/ lg(1/y).

Claim 2.2. For any distribution X , H(X) ≥ H∞(X).

Proof: Immediate from the definition.

Claim 2.3. Let f : {0, 1}` → {0, 1}n be a function, and let
X be uniform over {0, 1}`. Let X ′ be a distribution over
{0, 1}` where s bits are constant and the other `−s are uni-
form and independent. Then H∞(f(X ′)) ≥ H∞(f(X))−s.

Proof: The claim holds because, for every a,
Pr[f(X) = a] ≥ 2−s · Pr[f ′(X) = a].

Then we need the notion of influence of a variable xi on
a boolean function f : {0, 1}d → {0, 1}. Recall this is the
probability over the choice of a uniform input X ∈ {0, 1}d
that flipping the value of the variable xi changes the output
of f . Kahn, Kalai, and Linial show that a near-balanced
f has a variable with influence Ω(lg(d)/d), improving on
the lower bound Ω(1/d) which follows from the edge
isoperimetric inequality over the hypercube [17], [18]. This
improvement is not essential to our results; it makes the final
bound a bit better, and cleaner in the case d = nΩ(1).

Lemma 2.4 ([22]). Let f : {0, 1}d → {0, 1} be a function
that equals one (or zero) with probability p ≤ 1/2. Then
there is a variable with influence at least 0.2p lg(d)/d.

2.1. Proof of Theorem 1.6

Consider the bipartite graph with input side {x1, . . . , x`}
and output side {y1, . . . , yn}, where each variable yi is
connected to input variables it depends on. We call the
xi and yi both nodes and variables. By assumption each
variable yi has degree ≤ d. For a node v we denote by N(v)
the neighborhood of v; for a set V we denote by N(V ) the
union of the neighborhoods of the nodes in V . In particular
N(N(v)) is the two-step neighborhood of v.

Let
r := k/n ∈ [0, 1].

Note that there are ≤ k/2 input nodes with degree >
2dn/k = 2d/r, for else we would have > dn edges.

Now we devise an algorithm to generate f(X), and
then we analyze it to prove the theorem. The algorithm
works in stages. At stage i we work with a function
fi : {0, 1}Li × {0, 1}Wi → {0, 1}n. These functions are
obtained from f by fixing more and more input variables.
Li and Wi are disjoint sets of input variables, and we use
the notation {0, 1}Li instead of {0, 1}|Li| to maintain the
variable names throughout the algorithm. The sets Wi and
Li will satisfy the invariant N(Li)

⋂
N(Wi) = ∅.

Algorithm
1) Set L0 := ∅,W0 := {x1, . . . , x`}.
2) Let f0 : {0, 1}L0×{0, 1}W0 → {0, 1}n be the function

obtained from f by setting uniformly at random the
≤ k/2 input variables with degree > 2dn/k. Remove
those variables from W0.

3) For stage i = 0 to t− 1, where t := k
4

r
2d2 :

a) Pick a variable x ∈ Wi with maximal influence
on fi, that is, the probability over uniform input
to fi that flipping the value of x changes the
output;

b) Let Li+1 := Li
⋃
{x}; Wi+1 := W \N(N(x));

let fi+1 : {0, 1}Li+1 × {0, 1}Wi+1 → {0, 1}n
be the function obtained from fi by setting
uniformly at random the input variables in
N(N(x)) \ {x}.

4) Set uniformly at random the variables in Wt. Let f ′ :
{0, 1}Lt → {0, 1}n be the resulting function

5) Set uniformly at random the variables in Lt and output
the value of f ′.

First, note that the algorithm generates the same distribu-
tion as f(X) for uniform X ∈ {0, 1}`, because each bit is
set uniformly at random independently of the others.

Note that throughout the execution of the algorithm,
the invariant N(Li)

⋂
N(Wi) = ∅ is maintained. This is

because when we move a variable x into Li at Step (3b) we
remove N(N(x)) from Wi.

Claim 2.5. At every stage i < t, the variable x picked at
Step (3a) has influence q ≥ 0.003r lg(d)/ lg(4/r)d.

Proof: First note H∞(f0) ≥ k/2 (cf. Claim 2.3). Let
i < t be an arbitrary stage.

Write fi(X)|A for the restriction of fi(X) to the output
variables in set A.

At every stage we set < 2d(d− 1)/r variables. So

H∞(fi(X)) = H∞(fi(X)|N(Li)) +H∞(fi(X)|N(Wi))
≥ k/2− t2d(d− 1)/r.



Since H∞(fi(X)|N(Li)) ≤ |Li| ≤ t, we obtain

H∞(fi(X)|N(Wi)) ≥ k/2− t2d(d− 1)/r − t
≥ k/2− t2d2/r ≥ k/4,

by our choice of t = k
4

r
2d2 .

Let p ∈ [0, 1/2] be the number such that the maximum
Shannon entropy of an output variable y ∈ N(Wi) is H(p).
Bounding min-entropy from above by Shannon entropy, and
using the sub-additivity of Shannon entropy, we see

k/4 ≤ H∞(fi(X)|N(Wi)) ≤ H(fi(X)|N(Wi)) (1)
≤ |N(Wi)|H(p) ≤ nH(p).

Hence,

H(p) ≥ k

4n
.

By Claim 2.1, we get

p ≥ 0.06
k

4n lg(4n/k)
.

Now let y ∈ N(Wi) be a variable such that Pr[y = b] = p
for some b ∈ {0, 1}.

By Lemma 2.4 there is an input variable x that has
influence at least 0.2p lg(d)/d ≥ 0.003r lg(d)/ lg(4/r)d on
y. Note x ∈Wi, since y ∈ N(Wi). This concludes the proof
of the claim.

Claim 2.6. The source f ′(X) at Step 5 is a bit-block source
with block-size ≤ 2d/r. Its blocks are B0 = N(Lt), and for
Lt = {xj1 , . . . , xjt} and h ≥ 1, Bh = N(xjh).

Proof: By the invariant that N(Li)
⋂
N(Wi) = ∅, and

since Li+1 is obtained by moving a variable from Wi to
Li, we have that for any x, x′ ∈ Lt, N(x)

⋂
N(x′) = ∅.

Hence the neighborhoods of variables in Lt form a partition
of N(Lt). Each set in the partition has size at most ≤ 2d/r
by the bound on the degree of each input variable.

It remains to bound the entropy of f ′. Say that stage i
is good if, letting x be the variable picked at Step 5, after
the choice for the variables in N(N(x)) \ {x}, the output
variables in N(x) take two distinct values over the choice
of x. Note that if the latter is the case then it is also the
case for f ′ in Step 5, because after we set the variables in
N(N(x)) \ {x}, the output variables in N(x) depend only
on x, and x is not set until Step 5.

Hence, the entropy of the bit-block source f ′ is the
number of good stages. By Claim 2.5 each stage is good with
probability q ≥ 0.003r lg(d)/ lg(4/r)d. Note that although
the stages are not independent, the claim guarantees that
each stage is good with probability ≥ q regardless of the
outcomes of the previous stages. This is sufficient to apply
the standard chernoff bound.

For example, one can use a bound by Panconesi and
Srinivasan [30], with a compact proof by Impagliazzo and
Kabanets [20]. Letting Zi be the indicator variable of a

stage being bad, the claim guarantees that for any S ⊆ [t],
Pr[∧i∈SZi = 1] ≤ (1 − q)|S|. Theorem 1.1 in [20] implies
that the probability of having more than t(1−q/2) bad stages
is at most

2−tD(1−q/2||1−q) = 2−tD(q/2||q) ≤ 2−tq/5,

where D denotes relative entropy with logarithms in base 2,
and the inequality can be verified numerically.

Hence we have ≥ tq/2 good stages, except with proba-
bility 2−tq/5. Noting that

tq = 0.000375 · kr2 lg(d)/ lg(4/r)d3

concludes the proof. �

We now discuss how to improve the parameters in Theo-
rem 1.6 in special cases.

Small locality: When the locality d is small, it is ben-
eficial to use the following simple bound on influence: any
non-constant function f : {0, 1}d → {0, 1} has a variable
with influence ≥ 2/2d. Using this, the bound in Claim 2.5
can be replaced with q := 2/2d. (In the proof of Claim 2.5,
after we guarantee H∞(fi(X)|N(Wi)) ≥ k/4 > 0 we know
there is a non-constant output variable.) Following the proof
of Theorem 1.6, this guarantees tq/2 ≥ Ω(k(k/n)/d22d)
good stages except with probability 2−tq/5.

Large locality but small-depth decision tree: If the
locality is large, but we have the additional guarantee that
each output bit of the source is a decision tree of depth
d′ (e.g., d′ = lg d), then we can use the fact that every
decision tree has an influential variable [29] (cf. [25]).
This replaces a factor (lg d)/d with Ω(1/d′), guaranteeing
tq/2 = Ω(k(k/n)/ lg(4n/k)d2d′).

This improvement using [29] actually gives hope for a
more dramatic improvement on Theorem 1.6; see §5.

2.2. Extractor for local sources

In this section we complete the proof of the extractor for
local sources, restated next.

Theorem 1.1 (Extractor for local sources). For some ρ > 0,
any d = d(n), k = k(n):

There is an explicit function EXT : {0, 1}n → {0, 1}m
that extracts m bits with error ε ≤ 2−m

Ω(1)
from any d-

local source with min-entropy k, provided 2dn/k < mρ,
for:
(1) m = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3) = Ω̃(k(k/n)2d3),
or (2) m = Ω(k(k/n)/d22d).

As we mentioned, we obtain it using Rao’s extractor for
low-weight affine sources. We now define these sources,
observe that bit-block sources are a special case of them,
and finally state Rao’s extractor and prove Theorem 1.1.

Definition 2.7 ([31]). A distribution (or source) Y over
{0, 1}n is n-bit affine with entropy k and weight w if there
are k linearly independent vectors b1, b2, . . . , bk each of



hamming weight ≤ w, and a vector a0, such that Y can be
generated by choosing uniform X ∈ {0, 1}k and outputting
a0 +

∑
iXibi ∈ {0, 1}n.

Remark 2.8. A bit-block source with min-entropy k and
block-size w (cf. Definition 1.5) is affine with entropy k and
weight w (with the additional restrictions that the vectors
bi in Definition 2.7 have disjoint support). Indeed, one can
define each vector bi as 0 except for bi|Bi := fi(1)− fi(0),
and vector a0 as a0|B0 = b0, a0|Bi = fi(0).

Theorem 2.9 ([31], Theorem 1.3). There exist constants c, ρ
such that for every k(n) > lgc n there is an explicit extractor
EXT : {0, 1}n → {0, 1}k(1−o(1)) with error 1/2k

Ω(1)
for

affine sources with weight w < kρ and min-entropy k.

By Remark 2.8, Theorem 2.9 applies as stated to bit-block
sources of entropy k and weight w < kρ.

Proof of Theorem 1.1: Theorem 1.6 guarantees that any
d-local source with min-entropy k is 2−s close to a convex
combination of bit-block sources with entropy s and block-
size ≤ 2dn/k, where s = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3).

For a sufficiently small ρ > 0, Rao’s extractor (Theorem
2.9) extracts m := s/2 bits with error 1/2s

Ω(1)
from any

such bit-block source, as long as 2dn/k ≤ sρ ⇐ 2dn/k ≤
mρ. Thus the overall error is ≤ 1/2s

Ω(1)
+ 2−s = 1/2m

Ω(1)
.

This proves Theorem 1.1.(1).
To prove Theorem 1.1.(2) we reason similarly, using the

improvement on Theorem 1.6 for small locality discussed in
the paragraph “Small locality” above.

2.3. Optimizing Rao’s extractor

In this section we sketch how to optimize Rao’s extractor
(Theorem 2.9) to obtain ρ = 1 − ε for any fixed ε > 0.
This improvement can be obtained using the same steps as
in Rao’s proof, but optimizing a few results used there. We
are grateful to Rao for his help with the material in this
section.

First, Rao uses a parity check function P : {0, 1}n →
{0, 1}t for a code of distance wkα, with output length t =
O(w2k2α lg2 n). The parameter w corresponds to the weight
(or block-size) of the source, and the squaring turns out to
be problematic to the optimization. However using better
codes (e.g., [2]) one can make t = O(wkα lg n).

Second, Rao uses the strong, linear, seeded extractor
obtained in [33] building on Trevisan’s extractor [38]. The
dependence on n in the seed length of this extractors if
O(lg n), and for the current improvement it is important to
reduce to one the constant hidden in O(.). This for example
can be achieved using an extractor in [16] to condense
entropy before applying [33].

Finally, one needs to observe that Theorem 3.1 in [31]
although being stated for fixed constants 0.7 and 0.9, can
actually be obtained for constants arbitrarily close to 1.

3. FROM AC0 TO LOCAL

In this section we obtain extractors for AC0 sources,
proving Theorem 1.2, restated next. Then we prove the
negative result for generating (Y, b(Y )) in AC0, Theorem
1.4.

Theorem 1.2 (Extractor for AC0 sources). For some ρ > 0,
any γ > 0, d = O(1), k = k(n):

There is an explicit extractor EXT : {0, 1}n → {0, 1}m
with output length m = k(k/n1+γ) and error 1/nω(1)

for sources with min-entropy k that are generated by AC0

circuits C : {0, 1}nd → {0, 1}n of depth d and size nd,
provided n1+γ/k < mρ.

To prove this theorem we bound the entropy loss asso-
ciated to random restrictions, and then recall the switching
lemma.

The effect of restrictions on min-entropy: Recall that a
restriction ρ on n variables is a map ρ : [n]→ {0, 1, ?}. We
denote by fρ the function obtained from f by applying the
restriction.

We now state and prove a lemma that bounds the entropy
loss incurred when applying a random restriction to a
function.

Lemma 1.7 (Restrictions preserve min-entropy). Let f :
{0, 1}` → {0, 1}n be a function such that H∞(f(X)) = k.
Let ρ be a random restriction that independently sets vari-
ables to ?, 1, and 0 with probabilities q, (1 − q)/2, and
(1− q)/2. For every ε > 0:

Pr
ρ

[
H∞(fρ(X)) ≥ kq/4− lg(1/ε)/2

]
≥ 1− ε.

The proof of this lemma relies on the following isoperi-
metric inequality for noise, see [28] for a proof.

Lemma 3.1. Let A ⊆ {0, 1}` and α := |A|/2`. For any
0 ≤ p ≤ 1/2, let E be a noise vector of i.i.d. bits with
Pr[1] = p; let X be uniform in {0, 1}`:

α2 ≤ Pr
X,E

[X ∈ A ∧ X + E ∈ A] ≤ α1/(1−p) ≤ α1+p.

Proof of Lemma 1.7: The idea is to bound H∞(fρ(X))
using the collision probability PrX,Y [fρ(X) = fρ(Y )] of fρ,
which in turn can be analyzed via Lemma 3.1.

Specifically, note that the joint distribution
(fρ(X), fρ(Y )) where ρ is a random restriction with
parameter q as in the statement of the lemma, and X and
Y are uniform and independent, is the same as the joint
distribution (f(X), f(X + E)) where X is uniform and
E is noise vector where each bit is set to 1 independently
with probability p := q/2 ≤ 1/2.

For any a ∈ {0, 1}n, let Aa := f−1(a); also denote by
Xρ the result of applying the restriction ρ to X . By Lemma



3.1:

Pr
ρ,X,Y

[fρ(X) = fρ(Y )] =
∑
a

Pr
ρ,X,Y

[Xρ ∈ Aa ∧ Yρ ∈ Aa]

≤
∑
a

(|Aa|/2`)1+p

≤ max
a

(|Aa|/2`)p ≤ 2−pk,

where the last inequality is the assumption that
H∞(f(X)) ≥ k.

And so

Pr
ρ

[
Pr
X,Y

[fρ(X) = fρ(Y )] ≤ 2−pk/ε
]
≥ 1− ε.

To conclude, note that for any ρ

max
a

(
Pr
X

[fρ(X) = a]
)2

≤ Pr
X,Y

[fρ(X) = fρ(Y )],

and so with probability ≥ 1− ε over ρ we have

max
a

(
Pr
X

[fρ(X) = a]
)2

≤ 2−pk/ε

⇒H∞(fρ(X)) ≥ pk/2− lg(1/ε)/2.

The switching lemma: We also need to collapse an AC0

source to a local source, which can be accomplished via the
following standard corollary to the switching lemma [19].

Lemma 3.2. Let f : {0, 1}` → {0, 1} be a function
computable by a depth-d AC0 circuit with s gates. Let ρ be
a random restriction with Pr[?] = q < 1/9d. The probability
over ρ that fρ cannot be written as a decision tree of depth
t is ≤ s(9q1/dt)t.

This lemma can be proved using [37, Lemma 1] (cf. [4]).
The restriction is seen as the successive application of d
restrictions with Pr[?] = q1/d.

We can now prove Theorem 1.2.
Proof of Theorem 1.2: Let t be a slowly growing

function, such as t = lg o(lg n). Let EXT be the extractor in
Theorem 1.1 for locality t and min-entropy 0.1k/nγ .

By Lemma 3.2 a random restriction with Pr[?] = 1/nγ

will collapse all n circuits (computing the n output bits) to
decision trees of depth t – in particular, 2t-local functions
– except for an error 1/nω(1). (Here we use that t = ω(1).)

By Lemma 1.7, except for an error 1/nlgn, the restricted
source has min-entropy

k′ ≥ 0.25k/nγ − lg2 n ≥ 0.1k/nγ .

The theorem now follows from Theorem 1.1.(2). The the-
orem extracts m = Ω(k′(k′/n)/2O(2t)) ≥ Ω(k(k/n1+3γ))
bits (since 2O(2t) ≤ nγ), provided mρ > 2n2t/k′ which is
implied by mρ > n1+2γ/k. The error is dominated by the
error incurred by the restriction step, which is 1/nω(1).

Appealing to Theorem 1.1.(1) instead allows to improve
the error from 1/nω(1) to 1/nΩ(lgn), at the price of requiring
larger k.

Finally, we mention that Corollary 1.8, claiming that any
high-entropy AC0 distribution is close to a convex combina-
tion of high-entropy bit-block sources, can be proved along
the same lines. Namely we can generate the distribution by
first selecting a random restriction, and then the rest, and
invoke Lemmas 3.2 and Lemma 1.7 and Theorem 1.6 (the
“Small locality” version, see §2).

3.1. Negative result for generating (Y, b(Y ))

We now prove Theorem 1.4.

Theorem 1.4. There is an explicit map b : {0, 1}∗ → {0, 1}
such that for every d = O(1):

Let C : {0, 1}nd → {0, 1}n+1 be an AC0 circuit of
size nd and depth d. The distribution C(X) for uniform X

has statistical distance ≥ 1/2n
1−Ω(1)

from the distribution
(Y, b(Y )) for uniform Y ∈ {0, 1}n.

For b one can take the first bit of the extractor in Theorem
1.2 for k = n1−Ω(1).

Proof of Theorem 1.4: Define b to be the first output
bit of the extractor in Theorem 1.2 for n-bit distributions of
some min-entropy k = n1−Ω(1) generated by circuits of size
nd+a and depth d + a for a universal constant a to be set
later.

Assume towards a contradiction that there is a circuit
C(X) = (Y, Z) ∈ {0, 1}n × {0, 1} as in the theorem
such that the relevant statistical distance is ≤ 1/2n

δ

. Then
for every a, Pr[C(X) = a] ≤ 1/2n + 1/2n

δ ≤ 2/2n
δ

.
So H∞(C(X)) ≥ nδ − 1. Note that on uniform input U ,
b(U) = 1 with probability p = 1/2 ± o(1), and so Z = 1
also with probability p′ = 1/2± o(1).

Consider the circuit C ′ that runs C(X) to generate (Y, Z),
and then if Z = 1 it outputs Y , otherwise outputs a uniform
n-bit string. For a suitable choice of a, C ′ is implementable
in size nd+a and depth d+ a.

Note that the min-entropy of C ′(X) is ≥ nδ − O(1),
and that b(C ′(X)) = 1 with probability p′ + (1 − p′)p =
1/2 + Ω(1). For a large enough δ < 1, this contradicts
Theorem 1.2.

To get a lower bound of ε on the statistical distance, the
above proof needs an extractor for min-entropy lg(1/ε) −
O(1). This prevents us from obtaining bounds such as
ε = 1/2 − o(1). Obtaining such bounds for AC0 seems
an interesting direction.

4. A WORSE, SIMPLER EXTRACTOR

In this section we prove Theorem 1.3, restated next.

Theorem 1.3. There is a symmetric, explicit, deterministic
extractor EXT : {0, 1}n → {0, 1}m that extracts m =
Ω(lg lg n− lg d) bits with error ε = (d/ lg n)Ω(1) from any



n-bit source with shannon entropy k ≥ n − n0.49 whose
bits are each computable by a decision tree of depth d. To
extract m = 1 bit, one can take EXT := majority.

The proof combines several lemmas discussed next. See
the full version for proofs and discussions.

Lemma 4.1. [32], [13], [36] Let V = (V1, . . . , Vn) be a
random variable over {0, 1}n such that H(V ) ≥ n−a. Then
for any ε > 0 and integer q there exists a set G ⊆ [n] such
that |G| ≥ n−16·q·a/ε2, and for any distinct i1, . . . , iq ∈ G
the distribution (Vi1 , . . . , Viq ) is ε-close to uniform.

Lemma 4.2 (Bounded independence central limit theorem
[12]). There is C > 0 such that the following holds for every
n, ε, and q ≥ C lg2(1/ε)/ε2:

Let U = (U1, . . . , Un) be the uniform distribution over
{0, 1}n, and let X = (X1, . . . , Xn) be any q-wise inde-
pendent distribution over {0, 1}n. Then for any t ≥ 0:
|Pr [

∑
i Ui ≥ t]− Pr [

∑
iXi ≥ t]| ≤ ε.

Claim 4.3. Let f : {0, 1}n → {0, 1}q be a function such that
each output bit is computed by a depth-d decision tree. Then
for any event A ⊆ {0, 1}q , the probability that f(X) ∈ A
for a uniform X in {0, 1}n equals a/2qd for an integer a.

Proof of Theorem 1.3: Let the entropy be n− n0.5−γ .
Set

q := α

(
lg n
d

)
,

for a sufficiently small α depending on γ. We are going to
extract Ω(lg q) bits. Apply Lemma 4.1 with ε := 0.5/2dq .
For a small enough α, this gives that, except for at most

O(n0.5−γq2dq) = n0.5−γ2O(α lgn) = n0.5−γ/2

“bad” variables, any q “good” variables have a joint distri-
bution that is ≤ 0.5/2dq close to uniform. By Claim 4.3,
the joint distribution of those q variables is exactly uniform.
To summarize, the output distribution is q-wise independent,
except for t := n0.5−γ/2 bits that, we are going to think, are
arbitrarily correlated with the output. We are going to show
how to extract from such sources.

Let X ∈ [0, n− t] be the hamming weight of the q-wise
independent part, and Y ∈ [0, t] be the hamming weight of
the rest. Let B be the sum of n − t i.i.d. coin tosses (the
binomial distribution). By Lemma 4.2, there is an absolute
constant η such that for any interval [i, j], |Pr[X ∈ [i, j]]−
Pr[B ∈ [i, j]]| ≤ β := (1/q)η . Now, for a δ ∈ (0, 1) to be
determined later, partition [0, n − t] into s = qδ intervals
whose measure w.r.t. B is 1/s ± O(1/

√
n− t), which is

possible because B takes any fixed value with probability
at most O(1/

√
n− t) and because s ≤ lg n = (n − t)o(1)

(so the greedy approach of collecting intervals won’t stop
before collecting s). Now it can be easily shown (see full
version) that the probability that X+Y , the hamming weight
of the source, lands in any fixed interval [i, j] satisfies :

|Pr[X + Y ∈ [i, j]] − 1/s| = O(β) = O(1/qη). Since
we took s = qδ intervals, for a sufficiently small δ we get
that the statistical distance between X +Y and the uniform
distribution over intervals is 1/qΩ(1). Assuming w.l.o.g. that
s is a power of 2, we have extracted lg s = Ω(lg q) bits at
distance 1/qΩ(1) from uniform.

To show that majority extracts one bit, one uses the
same approach but instead of dividing into buckets one more
simply argues that Pr[X + Y > n/2] = 1/2± 1/qΩ(1).

5. OPEN PROBLEMS

Can one handle sources where each bit is a decision tree
of depth lg n (ambitiously, nΩ(1))? Handling decision tree
of depth ≥ lg n would also allow to handle AC0 circuits of
size larger than nlgn, the limit of current techniques. The
fact that every decision tree has an influential variable [29],
[25] seems promising, but at the moment we are unable to
carry through the proof in this case. On the other hand, the
fact that depth lg n is sufficient for a decision tree to select
a random variable from the input may also be used in a
counterexample.

Can we extract from lower min-entropy in Theorems 1.1?
Note one always needs k > d, since any distribution with
min-entropy k can be obtained in a d = k local fashion. So if
d is polynomial then k must be polynomial as well. However
for say d = O(1) one may be able to handle k = no(1).

Another question is whether we can extract with better
parameters from an n-bit source where n− t bits are k-wise
independent. Say we want to extract one bit. We handled
t ≈

√
n in the proof of Theorem 1.3 using majority. If

the n − t bits were uniform, we could allow for greater
entropy deficiency t by using Ben-Or and Linial’s recursive-
majority-of-3 function [5]. Can a similar improvement be
obtained for bounded independence?
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